

Growth Hormone Replacement Therapy: Clinical and Economic Implications for Managed Care

Pinchas Cohen, MD

Professor and Chief of Endocrinology Mattel Children's Hospital David Geffen School of Medicine University of California, Los Angeles

Talking Points

- Review clinical and economic data on recombinant human growth hormone (rhGH) therapy for adults and children with growth hormone deficiency (GHD) and related disorders, including:
 - Outcomes
 - Cost

Growth Hormone Deficiency in Adulthood

- Approximately 50,000 adults in the US have GHD
 - 6,000 new cases are reported each year, including GHD children who transition to GHD as an adult
- Categories based on the time GHD became manifest
 - Adult-onset (acquired) GHD: caused by trauma, central nervous system infection, hypothalamic or pituitary tumors, infiltrative or granulomatous disease, cranial irradiation, surgery, etc.
 - Pediatric Organic GHD: caused by genetic or acquired defects which continue into adulthood
 - Child-onset idiopathic: childhood GHD of unknown cause that may or may not continue into adulthood

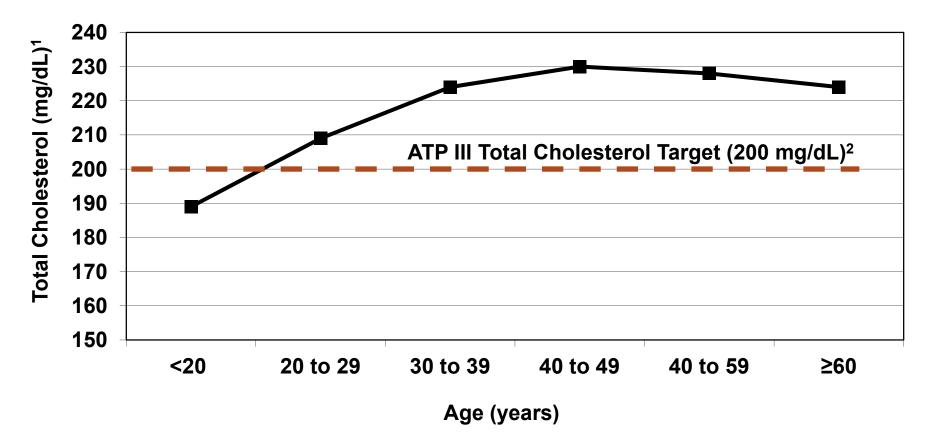
Adult Growth Hormone Deficiency (AGHD). The Human Growth Foundation Web site. Available at: http://www.hgfound.org/res_aghd.explained.html#aghdexplained3. Accessed October 12, 2010.

Clinical and Emotional Impact of Growth Hormone Deficiency

Physical ¹⁻⁴	Metabolic ¹⁻⁶	Psychosocial ⁷
 Reduced bone mineral density Reduced lean body mass Increased body fat Excessive fatigue Limited ability to perform daily activities 	 Abnormal lipid profile Increased cardiovascular risk Abnormal body composition Reduced bone density Poor immune function 	 Reduced quality of life Emotional disturbances Reduced self- confidence Social isolation Impaired memory and concentration

- 1. Boguszewski CL, et al. Eur J Endocrinol. 2005;152(1):67–75.
- 2. Hardin DS, et al. Clin Pediatr (Phila). 2007;46(4):279-286.
- 3. Saggese G, et al. J Clin Endocrinol Metab. 1996;81(8):3077-3083.
- 4. Underwood LE, et al. *J Clin Endocrinol Metab.* 2003;88(11):5273–5280.
- 5. Cook DM, et al. *Endocr Pract*. 2009;15(Suppl 2):1–29.
- 6. Boot AM, et al. *J Clin Endocrinol Metab.* 1997;82(8):2423–2428.
- 7. Kołtowska-Haggstrom M, et al. Eur J Endocrinol. 2009;161(Suppl 1):S51–S64.

GH-Deficient Adults Are at Greater Risk for CVD and Other Chronic Conditions


Parameter	Evidence of Morbidity
Bone density	Three-fold increase in bone fracture frequency ¹
Atherosclerosis	Over 20% increased carotid intima thickness ²
Inflammation	Two-fold increase in inflammatory markers CRP and IL-6 ³
Body composition	Greater adiposity, lower muscle strength ⁴
Quality of life	Impaired quality of life compared with the general population ⁵

- 1. Rosen T, et al. Eur J Endocrinol. 1997;137(3):240-245.
- 2. Sen F, et al. Eur J Endocrinol. 2008;158(5):615-622.
- 3. Leonsson M, et al. Clin Endocrinol (Oxf). 2003;59(2):242-250.
- 4. Sartorio A, et al. Arch Med Res. 2008;39(1):78-83.
- 5. Blum WF, et al. J Clin Endocrinol Metab. 2003;88(9):4158-4167.

CVD=cardiovascular disease CRP=C-reactive protein IL=interluekin

Total Cholesterol in GHD Patients Is Above Guideline-Recommended Levels

Elevated Cholesterol Adds to the CVD Risk in Adult GHD

- 1. Abs R, et al. Eur J Endocrinol. 2006;155(1):79–90.
- 2. ATP III Guidelines At-A-Glance Quick Reference. National Heart Lung and Blood Institute Web site. Available at: http://www.nhlbi.nih.gov/guidelines/cholesterol/atglance.pdf. Accessed October 12, 2010.

GH Therapy Has Significant Beneficial Effects on Cholesterol, Blood Pressure

Factoro	Treatment		Weighted mean change	Global Effect Size			
Factors	GH	Placebo	(GH-placebo)	(95% CI)			
Lean B mass	473	474	2.82 kg				
Fat mass	352	345	3.05 kg				
BMI	134	134	-0.12 kg/m ²	k∳t			
TG	202	203	2.71 mg/dL	F <u>i</u> ∳—I			
HDL Chol.	267	261	2.32 mg/dL				
LDL Chol.	255	248	-20.50 mg/dL				
Total Chol.	310	306	-13.15 mg/dL				
D.B.P.	200	201	-1.80 mmHg				
S.B.P.	190	191	2.06 mmHg				
Insulin	192	194	1.2 IU/mL				
Glucose	254	257	8.51 mg/dL				

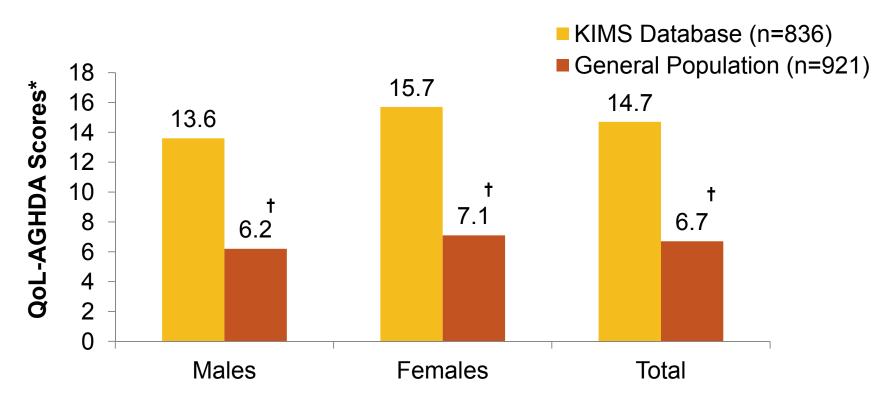
GH=growth hormone BMI=body mass index TG=triglyceride HDL=high density lipoprotein LDL=low density lipoprotein Chol=cholesterol DBP=diastolic blood pressure SBP=systolic blood pressure -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Maison P, et al. *J Clin Endocrinol Metab.* 2004;89(5):2192–2199.

GH Therapy Alters Multiple Cardiometabolic Variables

	Baseline	After 6 Mo GH Therapy	Change from Baseline (%)
Fasting insulin (mU/mL)	3.5	3.1*	-11
HbA1c (%)	6.2	5.6*	-9.7
C-reactive protein (mg/dL)	7.02	4.81	-31.5
Fasting plasma glucose (mg/dL)	94.8	91.7	-3.3
Total cholesterol (mg/dL)	209.5	185.5 [†]	-11.5
Triglycerides (mg/dL)	153.7	125.5	-18.3
Lp(a) (mg/dL)	15.3	21.3	40.2

n=20 adult GHD patients Mean age=46 years

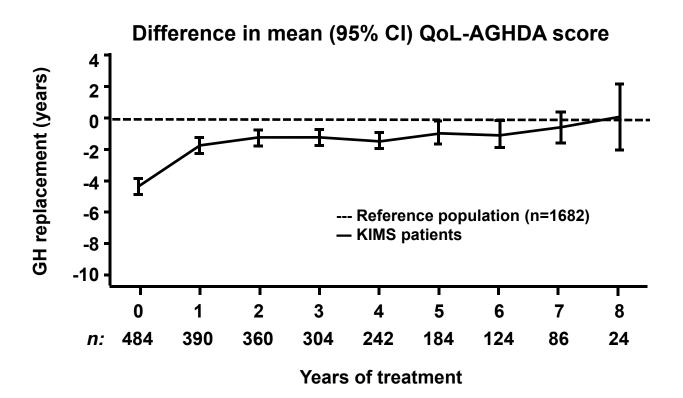

Initial and final doses:

0.33 and 0.38 mg/kg (women, n=10) 0.25 and 0.35 mg/kg (men, n=10)

*Changes are not clinically significant †*P*<0.05 Oliviera JL, et al. *J Clin Endocrinol Metab.* 2007;92(12):4664–4670.

Quality of Life in Adults With GHD Is Significantly Worse vs General Population

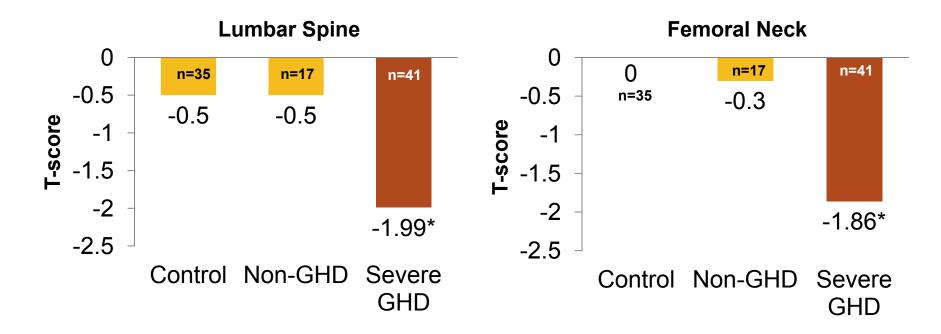
Data from the KIMS International Metabolic Database



KIMS=Kabi International Metabolic Study QoL-AGHDA=Quality of Life Assessment of Growth Hormone Deficiency in Adults

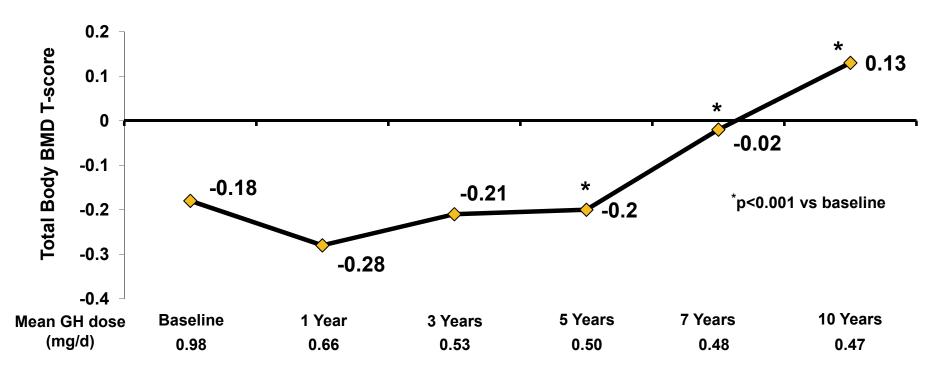
*Lower scores on the QoL-AGHDA indicate a higher quality of life †*P*<0.001 vs patients in the KIMS database Kołtowska-Haggstrom M, et al. *Horm Res.* 2005;64(1):46–54.

Quality of Life in GH-Deficient Adults Improves With GH Replacement Therapy



KIMS=Kabi International Metabolic Study

Very Low BMD in Adults With Severe GHD



Mean GH (μ /L) 40.7, 28.3, and 0.9 for control, non-GHD, and severe GHD, respectively

Bone Mineral Density in GHD Adults Increases With GH Therapy

Effects of 10 Years of GH Therapy in GHD 87 Adults

BMD=bone mineral density

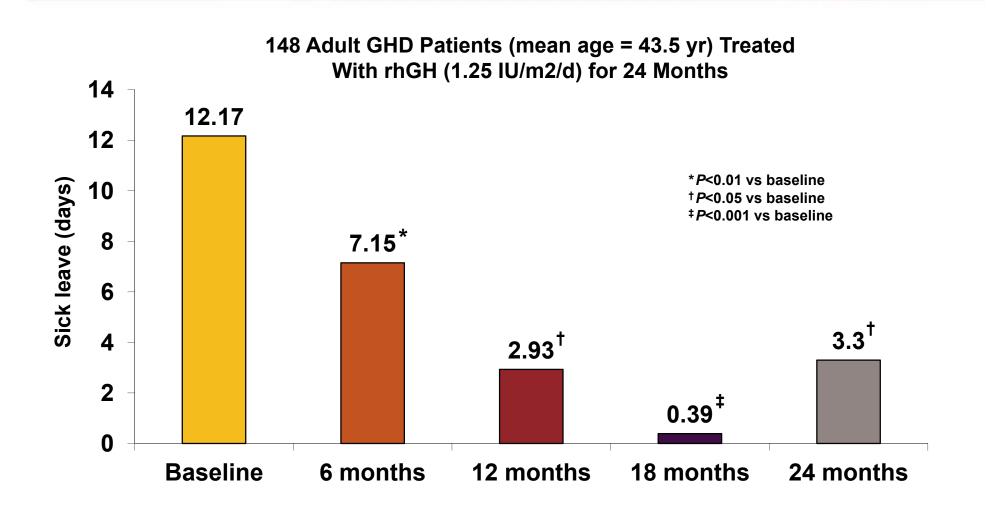
Gotherstrom G, et al. Eur J Endocrinol. 2007;156(1):55–64.

12 Months of GH Therapy Reduced the Need for Health Care

Data from the KIMS International Metabolic Database

	Baseline	12 Months
Sick leave days (number in previous 6 months)	9.5	3.8*
Hospital days (number in previous 6 months)	1.7	0.6*
Doctor visits (number in previous 6 months)	2.1	1.4 [†]
Leisure time physical activity (visual analog scale score)	40.8	51.1‡
Satisfaction with leisure time activities (visual analog scale score)	41.6	48.8‡
Need for assistance with daily activities (%)	21	16*

• n=150 and 154 adult men and women with GHD, respectively.

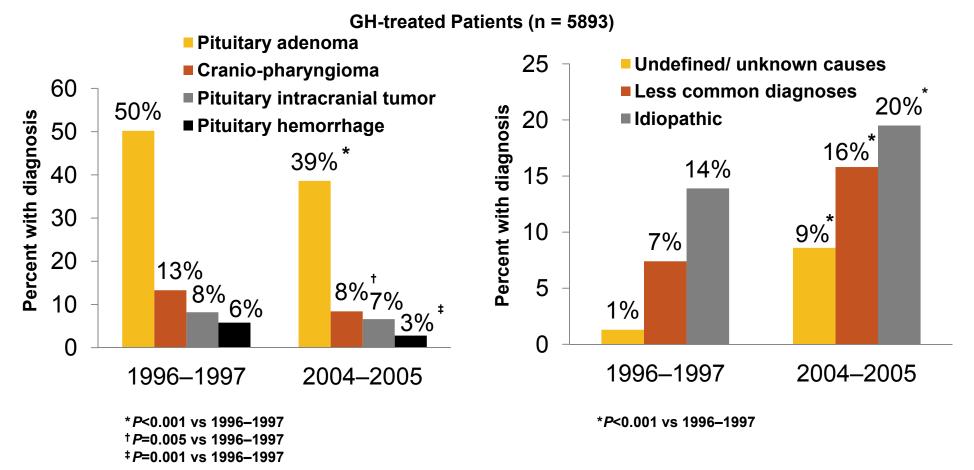

• Mean ages: Men 51 years; women: 49 years.

- *P<0.05 vs baseline
- †*P*<0.01 vs baseline

None of the patients had received prior GH therapy in adulthood.
GH dose ranged from 0.042 mg/kg/wk to 0.083 mg/kg/wk.

- *P*<0.01 vs baseline
- Hernberg-Ståhl E, et al. J Clin Endocrinol Metab. 2001, 86(11):5277–5281.

24 Months of GH Replacement Reduced Sick Leave Days



Verhelst J, et al. Clin Endocrinol (Oxf). 1997;47(4):485-494.

Shift in Use for GH Therapy Indicates a Trend Toward Less Severe Forms of GHD

Decreasing Trends

Increasing Trends

Webb SM, et al. J Clin Endocrinol Metab. 2009;94(2):392–399.

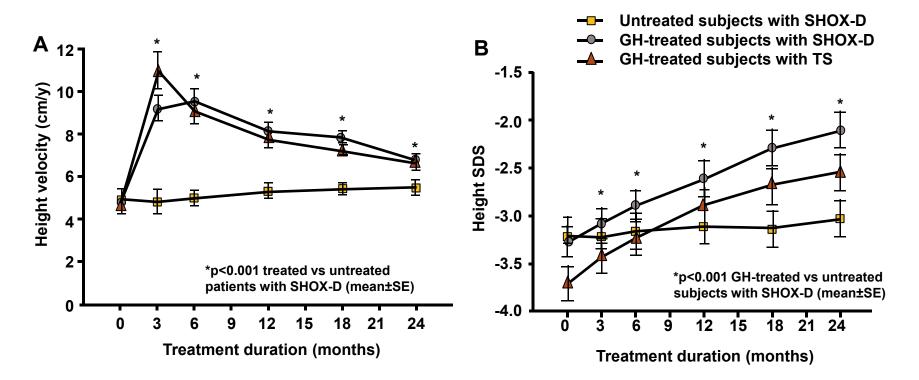
Adult GHD: Summary

- Adults with GHD are at increased risk for cardiovascular disease, impaired physical function, and reduced quality of life
- It is recommended that GH be prescribed for adults with a history of hypothalamic-pituitary disease and biochemically proven GHD
 - GH therapy appears to have a beneficial effect on bone, muscle, cardiovascular risk, quality of life and other variables
 - However, data on the effect of GH therapy on endpoints such as cardiovascular events, fractures, and death are lacking

Growth Hormone Deficiency and Other Forms of Short Stature in Childhood

- 20% have organic GHD resulting from central nervous system tumors, radiation, infection, or traumatic brain injury
- 80% have idiopathic GHD with no known cause

Additional FDA-approved Indications for GH Therapy in Children							
	Definition	Maximum Estimated Prevalence*					
ISS ²	Height ≥2.25 standard deviations <i>below</i> the mean for age and gender without evidence of underlying disease or GHD	400,000					
SGA ³	Birth weight and/or length at ≥2 standard deviations below the mean for gestational age and height below -2 SDS at age 4	90,000					

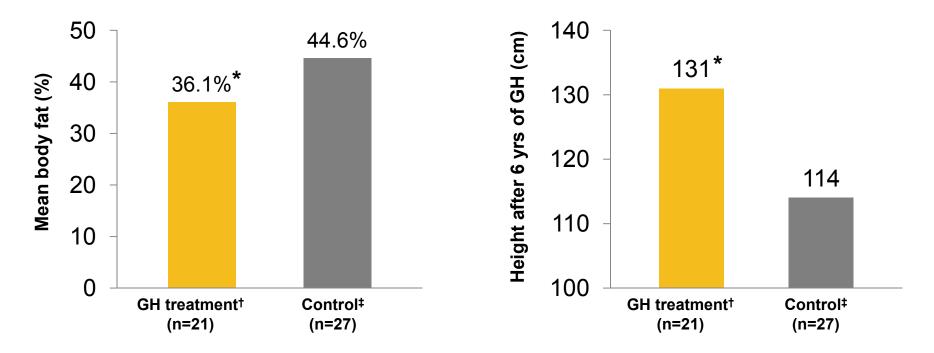

*Actual number of patients presenting to endocrinologists is approximately 10-fold lower.

- 1. Lindsay R, et al. J Pediatr. 1994;125(1):29-35.
- 2. Rekers-Mombarg LT, et al. J Pediatr Endocrinol Metab. 1999;12(5):611–622.
- 3. Lee PA, et al. *Pediatrics*. 2003;111(6 Pt 1):1253–1261.

ISS=idiopathic short stature SGA=small for gestational age

Long-term GH Therapy Is Beneficial to Patients With Genetically-Mediated Short Stature

24 Months of GH Effective for Treating Short Stature Associated With SHOX-D and Turner Syndrome

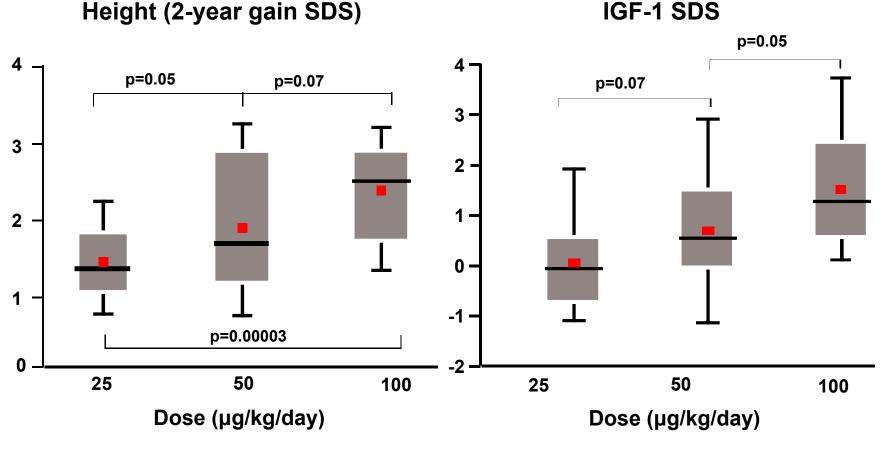

SHOX-D=short stature homeobox-containing gene deficiency

SHOX-D group: n=52 (aged 3.0–12.3 yrs) Turner Syndrome group: n=26 (aged 4.5–11.8 yrs) All patients received GH 50 mg/kg/day via sc injection

Blum WF, et al. J Clin Endocrinol Metab. 2007;92(1):219–228.

GH Therapy Reduces Body Fat and Increases Height in Patients With Genetically-Mediated Short Stature

Significantly Lower Body Fat and Greater Height Following 6 Years of GH Therapy in Children With Prader-Willi Syndrome


*P<0.01 vs control

[†]Aged 6–9 yrs at baseline

[‡]Aged 5–9 yrs at baseline

Carrel AL, et al. J Clin Endocrinol Metab. 2010;95(3):1131-1136.

Dose-related Responses of Height and IGF-1 to 2 Years of GH Therapy in GH-Deficient Boys

Plots represent +/- 2 SD (error bars), the 25 and 75% (box), the mean (red square), and the median (horizontal bar).

SDS=standard deviation score IGF-1=insulin-like growth factor 1

Cohen P, et al. J Clin Endocrinol Metab. 2002;87(1):90-98.

Long-term GH Therapy in Children With CKD Results in an Increased Adult Height

CKD=chronic kidney disease

Boys: n=193; aged 4.7–19.7 years; Girls: n=47; aged 8.1–18.0 years. All patients received GH (target dose 0.33 mg/kg/week) for at least 1 year.

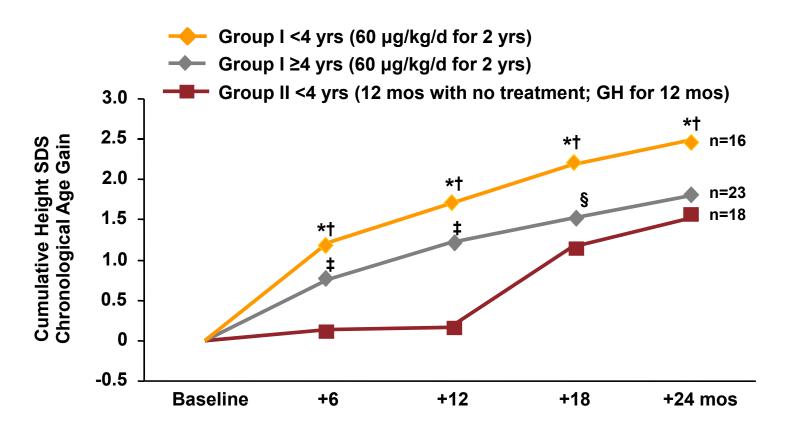
#P<0.01 boys vs girls

**P*<0.01 vs previous time point

Nissel R, et al. J Clin Endocrinol Metab. 2008;93(4):1359–1365.

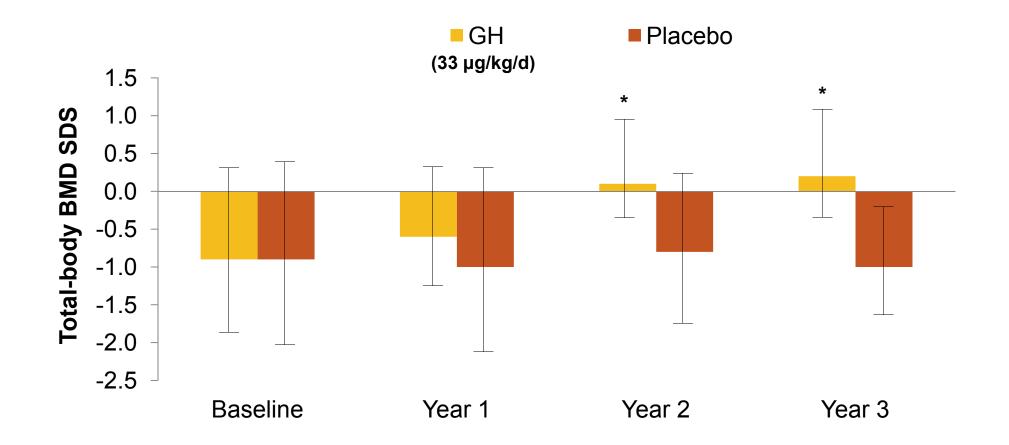
GH Therapy in Children Born Small for Gestational Age Increases Adult Height

Meta-analysis of 5 Randomized Controlled Clinical Trials


	Treated		Untreated			Mean Difference	Mean Difference					
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random [95% CI]		IV, Random, 95% CI		
Carel et all ¹¹ (2003)	-2.1	1.0	102	-2.7	0.9	47	21.3%	0.60 [0.28–0.92]			-0-	
Dahlgren and Wikland ¹⁰ (2005) <2 y	-1.6	0.8	41	-2.0	0.8	34	20.2%	0.40 [0.04–0.76]			-0	
Dahlgren and Wikland ¹⁰ (2005) >2 y	-1.2	0.7	36	-2.0	0.8	34	20.5%	0.80 [0.45–1.15]				
Van Dijk et al ¹³ (2007)	-1.4	1.0	37	-2.6	0.6	25	19.2%	1.20 [0.80–1.60]				-
Van Pareren et al ¹² (2003)	-1.0	0.8	54	-2.3	0.7	15	18.8%	1.30 [0.89–1.71]				-
Total (95% CI)			270			155	100%	0.85 [0.52–1.17]			\diamond	
Heterogeneity: τ2=0.10; χ2=15.58, <i>df</i> =4(<i>P</i> =0.004); ρ=74%												
Test for overall effect: z=5.11 (P<0.00001)									-2	-1	0 1	2
Test for overall effect: z=5.11		-2	-1	0 1	2							

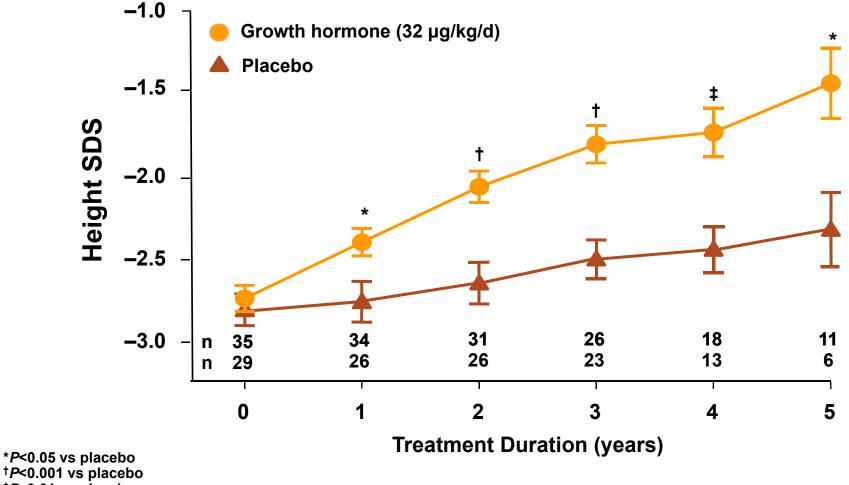
Favors control

Favors experimental


Maiorana A, Cianfarani S. *Pediatrics.* 2009;124(3);e519–e531. Carel JC, et al. *J Clin Endocrinol Metab.* 2003;88(4):1587–1593. Dahlgren J, Wikland KA. *Pediatr Res.* 2005;57(2):216–222. van Dijk M, et al. *J Clin Endocrinol Metab.* 2007;92(1):160–165. van Pareren Y, et al. *J Clin Endocrinol Metab.* 2003;88(8):3584–3590.

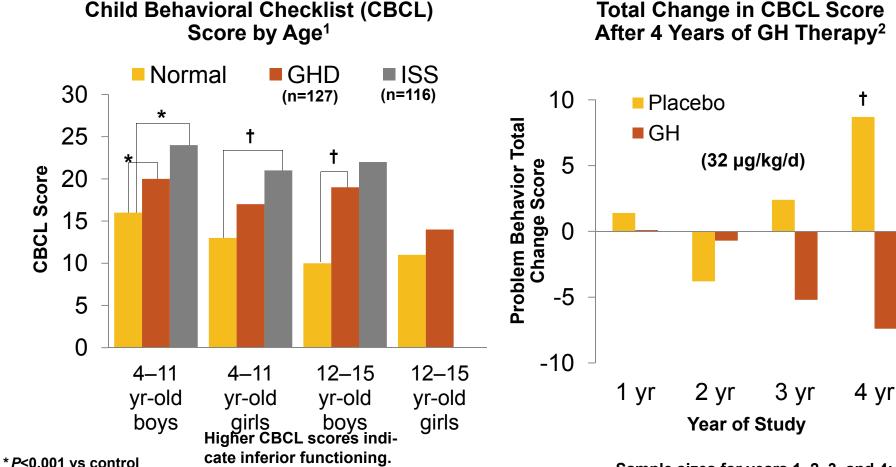
SGA Children Without Spontaneous Catch-up Growth Benefit From GH Treatment

*P<0.05 Group I <4 years vs Group I ≥4 years
†P<0.05 Group I <4 years vs Group II <4 and ≥4 years
‡P<0.05 Group I ≥4 years vs Group II <4 and ≥4 years
§P<0.05 Group I ≥4 years vs Group II ≥4 years
Argente J, et al. J Clin Endocrinol Metab. 2007;92(8):3095–3101.


GH Therapy Normalized BMD in Children Born Small for Gestational Age

*P<0.001 vs placebo

Arends NJ, et al. Clin Endocrinol (Oxf). 2003;59(6):779-787.


Height Is Greater in GH-treated Idiopathic Short Stature Patients vs Controls

[†]P<0.001 vs placebo [‡]P<0.01 vs placebo

Leschek EW, et al. J Clin Endocrinol Metab. 2004;89(7):3140-3148.

Efficacy of GH Therapy on the Psychosocial Profile of ISS Children

[†]*P*<0.05 vs control

1. Tanaka T, et al. *Clin Pediatr Endocrinol*. 2009;18(1):15–22.

2. Ross JL, et al. J Clin Endocrinol Metab. 2004;89(10):4873-4878.

Sample sizes for years 1, 2, 3, and 4: Placebo=9, 19, 9, 3; GH=17, 23, 12, 9, respectively.

Childhood GHD: Summary

- 1 in 3,500 children in the US are diagnosed with GHD
 - Only 20% have organic GHD; readily identifiable cause absent in the majority of cases
- Approximately 90,000 infants are born SGA in the US annually
 - GH treatment in SGA include increased final adult height and bone mineral density
 - GH therapy can be a cost-effective treatment for SGA
- Approximately 400,000 children in the US have ISS
 - GH therapy increases height and may improve behavioral profile of children with ISS
 - However, no consensus exists on the use of GH in ISS